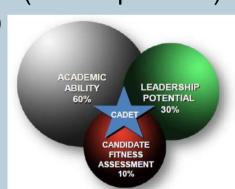


Predicting Success in Undergraduate Chemical Engineering at the United States Military Academy


Trevor Corrigan, Andrew Pfluger, Bryan Jonas, April Miller, Daniel Bahaghighat, Eric Mowles, Geoffrey Bull, Corey James, Enoch Nagelli, Melissa Eslinger, Matthew Armstrong, Russell Lachance, Andrew Biaglow

Abstract

This study examines a composite preadmissions tool created and used by the United States Military Academy as a predictor of success in the chemical engineering major. Our results suggest a positive correlation between this preadmissions tool, successful graduation, and performance on the Fundamentals of Engineering Exam (FEE). Sixty-five percent of all FEE failures from 2006-2019 at West Point had an at-risk score prior to admission. Grade Point Average analysis further examined the class rank impacts of majoring in chemical engineering.

Background

- Admissions tools predict successful graduation
- But are they valid for a challenging major?
- Unique Challenges of West Point
 - 47 Month Experience
 - Every Cadet an Athlete (daily practice)
 - Leadership positions
 - Summer/Weekend Military Training
 - **Mandatory Military Courses**
 - Mandatory Physical Education Courses
- Branch (Infantry/Armor/Aviation) & Post (GPA dependent)
- 2.5 extra courses (Chem Engineering)
- FEE (Engineering Majors)
- Whole Candidate Score (WCS)*

- College Entrance Examination Rank (Academic Ability)
- SAT/ACT + High School Class Rank (Adjusted)

Results

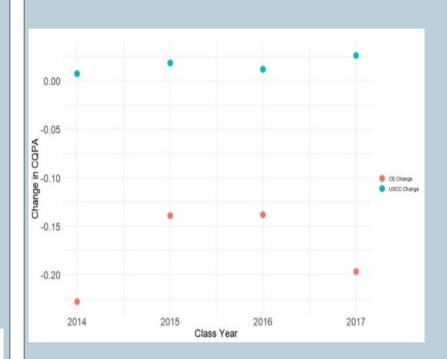


Figure 1. Change in CQPA from 1st Semester to graduating **CQPA** for Chemical Engineering (CE) majors and all graduates by class year United States Corps of Cadets (USCC) classes 2014 to 2019.

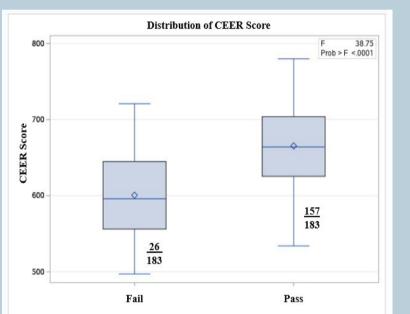


Figure 2. Distribution of CEER scores between Pass/Fail FEE populations.

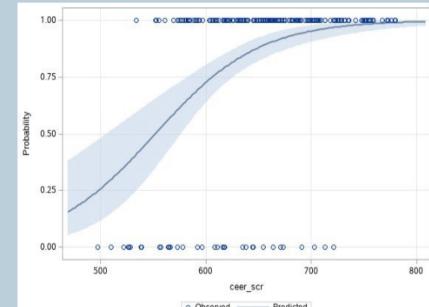


Figure 3. Univariate logistic regression model for success on the FEE. Probability of passing versus CEER score.

References

- 1. A. Belasco, et al., Measuring Success, J. Buckley, L. Letukas, B. Wildavsky, Eds. (Johns Hopkins University Press, 2018).
- 2.J. L. Kobrin, B. F. Patterson, E. J. Shaw, K. D. Mattern, S. M. Barbuti, Validity of the SAT for predicting first-year college grade point average. Coll.
- 3.R. C. Atkinson, E. Baker, B. Bridgeman, D. Briggs, M. Brown, Rethinking the SAT: The Future of Standardized Testing in University Admissions, R. Zwick, Ed. (RoutledgeFalmer, 2004).
- 4. R. Atkinson, Achievement Versus Aptitude Tests in College Admissions. Issues Sci. Technol. 18, 31–36 (2001).
- 5.S. Geiser, R. Studley, Validity and Fairness in Technology-Based Assessment: Detecting Mathematics Task Validity and Fairness in Technology-Based Assessment: Detecting Construct-Irrelevant Variance in an Open-Ended, Computerized Mathematics Task. Educ. Assess. 8, 1–26 (2002). 6. I. Lawrence, G. Rigol W., T. Van Essen, C. A. Jackson, A Historical Perspective on the SAT 1926-2001. Coll. Board Res. Rep. No. 2002-7 (2003). 7. West Point Mission Statement (April 17, 2019).
- 8. L. M. Hanser, M. Oguz, United States Service Academy Admissions (2015).
- 9.R. Lumos, W. LeFevre, F. Loudon, D. Curtis, O. B. S. Curtis, The History of the National Council of Examiners for Engineering and Surveying 1920-2004, J. Corley, Ed., 3rd Ed. (National Council of Examiners for Engineering and Surveying, 2004).
- 10. National Council of Examiners for Engineering and Surveying (April 17, 2019).
- 11.W. A. Grove, T. Wasserman, The life-cycle pattern of collegiate GPA: Longitudinal cohort analysis and grade inflation. J. Econ. Educ. 35, 162–174
- 12.M. Eslinger, T. Hill, M. Cowan, STRATEGIES TO CORELATE ADMISSIONS CRITERIA TO PERFORMANCE IN STEM COURSEWORK FOR NON-SCIENCE MAJORS (2018).
- 13. J. H. Zar, Biostatistical Analysis, 5th Ed. (Pearson, 2010).
- 14. Whole Candidate Score Picture. New Admissions Committee Training 16-17. Power Point. January 2019. Amplifying

Amplifying Data

Table 1. West Point Chemical Engineering Program Aggregated Data, 2006 – 2019

,	
Total Chemical Engineering Graduates	215
Total Cadets Declaring Major	267
% of Cadets who Remain in the Major through Graduation	80.67%
Average CEER Score	655 ± 61
FEE Success Rate	83.72%
Average Cumulative GPA	3.37 ± 0.44

Fall Term	Course		Credit	Spring	Course		Credit
4th CLASS			Hours	Term			Hours
MA103	Math. Modeling & Intro. Calculus		4.5	MA104	Calculus I		4.5
CH101	General Chemistry I		4.0	CH102	General Chemistry II		4.0
EN101	Composition		3.0	EN102	Literature		3.0
HI107	Western Civilization		3.0	HI108	Regional Studies in World History		3.0
IT105	Introduction to Computing & IT		3.0	PL100	General Psychology		3.0
PE11x	Combatives / Boxing / Movement		0.5	MS100	Introduction to Warfighting		1.5
				PE150	Fundamentals/Personal Fitness		1.5
3rd CLASS		Total	18.0			Total	20.5
MA205	Calculus II		4.0	CH362	Mass and Energy Balances		3.5
PH205	Physics I		4.0	MA364/5	Applied Engineering Math		3.0
Lx203	Foreign Language		4.0	PH206	Physics II		4.0
SS201	Economics		3.0	Lx204	Foreign Language		4.0
PY201	Philosophy		3.0	SS202	American Politics		3.0
MS200	Fundamentals: Army Operations		1.5	EV203	Physical Geography		3.0
				PE 2xx	Lifetime Physical Activity		0.5
2nd CLASS		Total	19.5			Total	21.0
CH363	Separation Processes		3.5	CH364	Chemical Reaction Engineering		3.5
EE301	Fundamentals of Electrical Engineering		3.5	CH367	Introduction to Automatic Process Control		3.0
CH383	Organic Chemistry 1		3.5	MC312	Thermal-Fluid Systems 2		3.0
MC311	Thermal-Fluid Systems 1		3.5	MC300	Fundamentals of Eng. Mech. & Design		3.0
PL300	Military Leadership		3.0	SS307	International Relations		3.0
MA206	Probability and Statistics		3.0	MS300	Platoon Operations		1.5
PE32x	Survival Swimming		0.5	PE360	Combat Applications		1.5
1st CLASS	22 100000 220 22000	Total	20.5	20000	1409-171_ 120-1712 1697-185 150-750	Total	18.5
CH459	Chemical Engineering Laboratory		3.5	CH402	Chemical Engineering Process Design		3.5
CH365	Chemical Engineering Thermodynamics		3.0	CH400	Chemical Engineering Prof. Practice		1.5
CH485	Heat & Mass Transfer		3.5	Elective	Engineering Elective 3		3.0
Elective	Engineering Elective 1		3.0	HI302	History of the Military Art		3.0
Elective	Engineering Elective 2		3.0	LW403	Constitutional & Military Law		3.0
Lietuve							

Figure 4. Eight Term Academic Program for Chemical Engineering Majors at West Point